Агвт пожарный автомобиль


Автомобиль Газоводяного Тушения

Автомобиль Газоводяного Тушенияvanillarabbit wrote in fireguards25 декабря, 2009Пожары бывают разные, сложные, простые страшные. Характеризуются они все по площади горения, количеству вещества участвующего в горении (пожарной нагрузке), и в принципе все тушатся одинаково, а иногда выгорают сами. Исключение составляют газонефтяные фонтаны, у них нет площади горения как таковой, у них есть высота пламени. Пожарная нагрузка их не поддается исчислению, так как под землей всего этого добра может быть просто море. А вот ущерб подсчитывается очень быстро, достаточно знать дебет (отдачу скважины) и умножить ее на стоимость нефти, и мы  получим то количество денег что сгорает в течении секунды. Для тушения такого вот нестандартного пожара нужна нестандартная техника. Для тушения газо-нефтянных фонтанов и предназначен АГВТ (Автомобиль Газо Водяного Тушения) .

Как видно на иллюстрации машинка дико интересная, обычное автомобильное шасси, с установленным на него... правильно Турбовинтовым авиационным двигателем. Принцип действия прост,  основан он на эфекте распыления воды в реактивной струе. Вода в струю реаткивную струю подается с помощью нескольких стволов расположенных непосредственно на ТВРД, для достижения необходимого давления и водоотдачи АГВТ обвязывают с одной или двумя ПНС (Пожарно Насосной Станцией).

Первая АГВТ в России (пруфлинк) появилась в Тюменском гарнизоне в 1966 году, и была сделана на основе отремонтированного двигателя ВК-1 от МИГ-15. Появление такой машины было связано с развитием нефтегазового комплекса в Сибири. Необходимость в ней появилась почти сразу, так как один из самых первых нефтяных фонтанов горел недалеко от Сургута в течении трех месяцев.

После этого появилась мелкосерийная АГВТ-100 (157К) на основе того же двигателя.

Следующий мелкосерийный  АГВТ-100 (131) ПМ141 производился в Торжке, в 1971-1974 гг. Изготавливался только по непосредственным заказам гарнизонов и имел следующие характеристики:боевой расчет - 3 чел., марка турбореактивного двигателя - ВК-1, тяга - 2700 кгс., объем топливного бака - 2000 л., расход воды на тушение - 60 л/с., расход воды на охлаждение - 18 л/с., перемещение турбоустановки в вертикальной плоскости: -20° +60°, в горизонтальной - ±40°, время работы по топливу - 45 мин., габаритные размеры: 7900х2600х3100 мм, полная масса - 10.475 т., максимальная скорость - 80 км/ч.

Хозяйке на заметку: маркировка моделей пожарных автомобилей читается просто: АГВТ - Автомобиль ГозоВодяного Тушения100 - Максимальная Водоотдача(131) - Автомобильное шасси (Зил 131)

ПМ141 - маркировка модели

Следующим в серийным  АГВТ стала модель АГВТ-150 (375) ПМ168 того же завода на шасси автомобиля УРАЛ 375.

Характеристика: боевой расчет - 3 чел., марка турбореактивного двигателя - Р11В-300 от МИГ-21, тяга - 4500 кгс., объем топливного бака - 2000 л., расход воды на тушение - 90 л/с., расход воды на охлаждение - 18 л/с., перемещение турбоустановки в вертикальной плоскости: -18° +60°, в горизонтальной - ±45°, время работы по топливу - 35 мин., габаритные размеры: 8000х2730х2800 мм, полная масса - 13.300 т., максимальная скорость - 75 км/ч. После распада СССР распада этот вид техники продолжал совершенствоваться, и в итоге появились три новые модели:АГВТ-150(43114). 2001 г.

Характеристика: боевой расчет - 3 чел., объем бака для воды системы орошения - 300 л., марка турбореактивного двигателя - ВК-1, объем топливного бака - 2000 л., расход воды на тушение - 90 л/с., расход воды на охлаждение - __ л/с., перемещение турбоустановки в вертикальной плоскости: -15° +60°, в горизонтальной - ±45°, габаритные размеры: 8200х2500х3100 мм, полная масса - 14.000 т., максимальная скорость - 90 км/ч. АГВТ-150 (VOLVO FL6). 2006 г.

Характеристика: боевой расчет - 3 чел., объем бака для воды системы орошения - 300 л., марка турбореактивного двигателя - ВК-1, объем топливного бака - 2000 л., расход воды на тушение - 90 л/с., расход воды на охлаждение - __ л/с., перемещение турбоустановки в вертикальной плоскости: -15° +60°, в горизонтальной - ±45°, электрогенератор - 4 кВт., осветительная мачта - 8 м., прожектора - 2х500 Вт., габаритные размеры: 8860х2500х3370 мм, полная масса - 14.650 т., максимальная скорость - 90 км/ч.Помимо АГВТ на базе колесных шасси существует и вот такой вот аппарат:

Это ПСУГВТ-200 (ГПС). Выпущен он в 2006 году и имееет следующие характеристики: боевой расчет - 3 чел., марка турбореактивного двигателя - ВК-1А - 2 шт., тяга двигателя - 1920 кгс, частота вращения номинальная - 9000 об/мин., максимальная - 10000 об/мин., температура реактивной струи - 645°С, расход топлива - 1840 л/час., объем топливного бака - 2500 л., расход воды на тушение - 120 л/с., расход воды на охлаждение - 20 л/с., перемещение турбоустановки в вертикальной плоскости: -15° +60°, в горизонтальной - ±180°, габаритные размеры: 9000х3500х3500 мм.Но это еще не все, в разное время, были созданы и несколько «кустарных» образцов. Слово «кустарных» я специально занес в кавычки, потому как сделать такое кустарям одиночкам типа известного героя книг Ильфа и Петрова не под силу, так что эти машины показывают уровень технических знаний и подготовки советских, украинских и российских пожарных.АГВТ-100 (131). Начало 2000-х годов. Луганский гарнизон Украина.

АГВТ-300 (255В). Начало 1980-х годов. Черниговский гарнизон.

Машина очень интересная хотя бы своей водоотдачей 300 литров в секунду. Автомобиль газоводяного тушения АГВТ-300 на шасси КрАЗ-255В изготовлен местными рационализаторами на базе областного техотряда. На автомобиле использовано два турбореактивных двигателя Р11В-300. В 1988 и 1991 годах на ВДНХ УССР демонстрировался автомобиль газоводяного тушения в действии!!!АГВТ-300 (138). Середина 1970-х годов. Суммской гарнизон.

Ну и наконец несколько фото этих машин в действии:Тот самый АГВТ-300 (255В).

Турбореактивный двигатель работает.

Работа двух машин одновременно. Видны магистральные линии для подачи воды.

В создании статьи использовались материалы сайтов:

http://www.firedesign.narod.ru

http://www.pozhtechnika.ru

http://17ofps.ru

fireguards.livejournal.com

АГВТ-150 на шасси КамАЗ 5350

Кабина боевого расчета – штатная кабина автомобильного шасси, салонного типа, 2-х дверная, 2-х местная (либо с отдельной кабиной боевого расчета 4-х дверная 7-ми местная). В дверях кабины и у дверных проемов имеются поручни для удобства и оперативной посадки боевого расчета. Во 2-м ряду кабины установлены 4 посадочных места с индивидуальными спинками. В непосредственной близости может размещаться однобалонный дыхательный аппарат со сжатым воздухом. Каждое место имеет отдельный механизм фиксации дыхательного аппарата, а под сиденьями имеются места для пожарно-технического оборудования. Созданное единое пространство размещения бойцов, позволяет сделать работу команды, более скоординированной и оперативной. Кабина оборудована поручнями, плафонами внутреннего освещения, обогревателем, люком на крыше и специальными приборными панелями систем управления автомобиля и оборудования. Имеются подножки для удобства подъема команды, которые выполняются в стационарном или автоматическом виде.

Цистерна и пенобак изготовлены из коррозионностойкого армированного стеклопластика (опциональная возможность исполнения из углеродистой стали, нержавеющей стали, полипропилена и полиэтилена). В креплении цистерны к кузову присутствуют упругие демпфирующие элементы, предотвращающие вредное воздействие на цистерну от скручивания рамы. Опциональная возможность установки автономного или стационарного подогрева емкостей, а также их утепление.

Кузов и кабина представляют собой сборную конструкцию из алюминиевых профилей, облицованных алюминиевыми листами с применением клеевой технологии (опциональная возможность - облицованными армированными стеклопластиковыми листами). Кузов является составной частью надстройки и служит для размещения и защиты ПТВ и АСИО от повреждений при транспортировке. Используются собственные сэндвич-панели для повышенной тепло и шумо изоляции, а также для повышенного комфорта.

Кузов состоит из отсеков для размещения ПТВ и АСИО, а также насосного отсека в задней части кузова.

В креплении кузова к надрамнику присутствуют упругие демпфирующие элементы, предотвращающие вредное воздействие от скручивания рамы на кузов.

Двери отсеков шторного типа (опциональная возможность исполнить двери панельного типа). Шторы изготавливаются из алюминиевых сплавов.

Дверь насосного отсека шторного типа (опциональная возможность исполнить двери панельного типа, в таком случае выполняет роль защитного козырька). Шторы изготавливаются из алюминиевых сплавов.

Все двери кузова оборудованы самосрабатывающими запорными устройствами, удерживающими их в закрытом положении, а также датчиком открытого положения с индикацией ее в кабине водителя на панели управления.

Открытые при стоянке двери, люки, и другие элементы конструкции автомобиля, увеличивающие габаритные размеры, оборудованы световозвращающими элементами и другими сигнальными устройствами, указывающими габариты автомобиля при открытых дверях.

Проемы дверей, крышки люков и других элементов кузова имеют уплотнения, предохраняющие отсеки от попадания в них атмосферных осадков, пыли и грязи.

Размещение ПТВ в отсеках учитывает тактику его оперативного использования, обеспечивает надежность фиксации оборудования, доступность, удобство и безопасность при съеме и установке.

При размещении оборудования, ПТВ объединено по группам назначения (стандартно):

- личное снаряжение пожарных;

- оборудование для забора воды и подачи первого ствола;

- оборудование для подъема личного состава на высоту;

- оборудование для вскрытия и разборки конструкций;

- оборудование для прокладки и обслуживания магистральных рукавных линий и т.п.;

- иное оборудование.

Пожарно-техническое вооружение надёжно установлено и закреплено в отсеках пожарного автомобиля.

Система орошения (охлаждения) автомобиля установлена по всему периметру кузова, а также установлены защитные теплоотражательные шторы для защиты задних колес автомобиля.

Лестницы для подъёма на крышу автомобиля выполнены из алюминиевого сплава.

Для удобства команды кузов при необходимости имеет складные подножки.

Пожарный автомобиль оборудован Турбореактивной установкой, состоящей из:

- Турбореактивного двигателя;

- Водопенных коммуникаций с запорной и соединительной арматурой ручного управления (опциональная возможность установить дистанционное управление);

- Системы управления с дистанционным пультом 50 м.

В автомобиле используются энергосберегающие технологии на основе LED.

Для оформления подробного предложения с параметрами просим отправить к нам заявку либо обратиться в нашу компанию по контактным телефонам.

unimod.ru

9.8. Автомобили газоводяного тушения (агвт)

В перечне пожарных автомобилей целевого применения АГВТ занимают особое положение. Это обусловлено как областью их применения, так и спецификой механизма тушения пожара.

Основу АГВТ составляют турбореактивные двигатели (ТРД). Высокая скорость их отработавших газов (рис.9.39) обусловливает гидродинамический срыв пламени. Особенно эффективным он оказался при тушении горящих нефтяных и газовых фонтанов. Для улучшения механизма тушения в струю отработавших газов вводят воду. Это, хотя и снижает их скорость и температуру (рис.9.40), но обеспечивает охлаждение фронта пламени горящего фонтана.

Впервые АГВТ был применен в нашей стране в 1967 г., когда успешно был потушен пожар нефтяного фонтана с дебитом 6000 т/сутки. С тех пор тушение горящих газовых (нефтяных) фонтанов осуществляется в основном АГВТ.

Для рационального тушение пожаров АГВТ должны удовлетворять ряду требований:

  • базовое шасси для них должно быть высокой проходимости, так как они используются в условиях бездорожья;

  • ТРД должны иметь большую тягу с достаточно большим количеством отработавших газов;

  • направление огнетушащей струи (отработавшие газы и введенная в них вода) должно регулироваться в вертикальной или горизонтальной плоскостях;

  • в конструкции АГВТ должны предусматриваться устройства, обеспечивающие его устойчивость при работе ТРД.

АГВТ состоит из базового шасси 1 (рис.9.41), турбореактивного двигателя 6, подъемно-поворотного устройства для него 7, лафетных стволов 5, цистерны 4 с топливом для ТРД, тепловой защиты 3 и бака 10 для воды, обеспечивающей защиту от теплового излучения.

Управление направлением газоводяной струи турбореактивного двигателя 6 осуществляется гидроприводами, включенными в гидравлическую систему (рис.9.42). В нее входят гидромотор 8 поворота двигателя, гидроцилиндры 9 его подъема, гидроцилиндры 10 блокировки рессор и гидромотор насосного агрегата 11, питающего систему орошения.

Гидравлическая жидкость из бака 1 может подаваться насосами 3,4 или 17 в напорную линию Р. От нее через соответствующие клапаны 7 или гидрораспределители 13 она поступает в исполнительные механизмы. При их выключении гидравлическая жидкость поступает к гидрораспределителю 13, а затем по трубопроводу Т через фильтр 16 в бак 1. По дренажному трубопроводу 18 жидкость сливается в бак 1 от гидронасоса 3 и гидромоторов 8 и 11.

В качестве гидравлической жидкости применяют масло ВМГ3, МГЕ и др. масла. Давление в системе 16 МПа.

Подача воды в поток отработавших газов осуществляется лафетными стволами. Они укрепляются на корпусе ТРД так, что водяные струи входят в газовый поток на расстоянии 1…2 метров от сопла ТРД.

На АГВТ устанавливают лафетные стволы с диаметром насадка 36 мм и расходами 20 л/с. Вода к ним подается от ПНС, насосно-рукавных автомобилей или пожарных автоцистерн.

При тушении пожаров АГВТ устанавливают на небольших расстояниях от горящего факела. Поэтому на них предусматривается защита от тепловых потоков до 25 кВт/м2 для обеспечения безопасной работы.

Для защиты АГВТ от теплового потока пожара устанавливают оросители щелевого типа. Щелевые насадки ориентированы на орошение кабины боевого расчета, цистерны с горючим для ТРД и бака с горючим для АГВТ и колес. Для защиты от теплового излучения горящего факела рекомендуется применять съемные экраны из асбестоткани и других материалов. Ими возможно защищать колеса автомобиля, бензобаки, кабину.

Система запуска и управления ТРД дистанционная. Пульт управления выносной. Управление возможно на расстоянии до 50 м. На АГВТ предусматривается с лоринготелефонной аппаратурой.

Одним из параметров, характеризующих совершенство ТРД, является тяга. Она находится в пределах 10…50 кН. Тяга ТРД является причиной опрокидывающей силы. Поэтому становится важным обеспечение устойчивости АГВТ против опрокидывания.

Опрокидывающая сила Р0 равна (рис.9.43)

, (9.13)

где: Т – тяга, Н; R - реактивная сила водяной струи, Н

Реактивная сила водяной струи определяется

, (9.14)

где: ω - площадь насадка лафетного ствола, м2; р – давление у насадка, Па; n - количество лафетных стволов.

В вертикальной плоскости опрокидывающая сила в поперечном направлении равна

.

В горизонтальной плоскости ее величину определим по формуле

.

Опрокидывание произойдет в случае Rв = 0, тогда можно записать

, (9.15)

где: Му –момент удерживающий, Нм; Мо – момент опрокидывающий, Нм.

Из рис.9.43 можно записать:

где: Ga - сила веса, Н.

Сила веса определяется по формуле

, (9.16)

где: m - масса автомобиля, кг; g - земное ускорение, м/с2.

Сила опрокидывающая, Н

. (9.17)

Зная величины Му и Мо , определяют запас устойчивости

. (9.18)

Запас устойчивости для грузоподъемных стреловых машин принимается равным 1,4. При работе ТРД сила тяги может резко изменяться, например, при резком изменении частоты вращения двигателя, поэтому запас устойчивости принимается Ку ≥ 2. Для повышения устойчивости АГВТ необходимо применять блокировку рессор.

Некоторые параметры технических характеристик АГВТ приведены в табл.9.7.

Продолжительность маневров ТРД достаточно мала. Так, ТРД АГВТ-150 время поворота в любую сторону до максимального значения равно 8 с, вверх – 13, а вниз – 4 с.

Таблица 9.7

Показатели

Размер-

ность

АГВТ-100(131)

мод.141

АГВТ-150(43114)

Тип шасси

Колесная формула

Мощность двигателя

Удельная мощность

Максимальная скорость

Тип ТРД

Количество лафетных стволов

Расход воды

Вместимость топливных баков

Производительность по газоводяной смеси

Углы поворота ТРД

-

-

кВт

кВт/т

км/ч

шт.

л/с

л

кг/с

град

ЗИЛ-131

6х6

110

10,5

80

ВК-1А

3

60

2000

100

60

20

40

КамАЗ-43114

6х6

164

12,6

80

ВК-1

4

90

2700

150

60

15

45

studfiles.net

9.8. Автомобили газоводяного тушения

В перечне пожарных автомобилей целевого применения автомобили газоводяного тушения (АГВТ) занимают особое положение. Это обусловлено как областью их применения, так и спецификой механизма тушения пожара.

Основу АГВТ составляют турбореактивные двигатели (ТРД). Высокая скорость их отработавших газов (рис. 9.39) обусловливает гидродинамический срыв пламени. Особенно эффективным он оказался при тушении горящих нефтяных и газовых фонтанов. Для улучшения механизма тушения в струю отработавших газов вводят воду. Это хотя и снижает их скорость и температуру (рис. 9.40), но обеспечивает охлаждение фронта пламени горящего фонтана.

Впервые АГВТ был применен в нашей стране в 1967 г., когда успешно был потушен пожар нефтяного фонтана с дебитом 6000 т/сут. С тех пор тушение горящих газовых (нефтяных) фонтанов осуществляется в основном АГВТ.

Для рационального тушения пожаров АГВТ должны удовлетворять ряду требований:

базовое шасси для них должно быть высокой проходимости, так как они используются в условиях бездорожья;

ТРД должны иметь большую тягу с достаточно большим количеством отработавших газов;

направление огнетушащей струи (отработавшие газы и введенная в них вода) должно регулироваться в вертикальной или горизонтальной плоскости;

в конструкции АГВТ должны предусматриваться устройства, обеспечивающие его устойчивость при работе ТРД.

АГВТ состоит из базового шасси 1(рис. 9.41), турбореактивного двигателя6, подъемно-поворотного устройства для него 7, лафетных стволов5, цистерны4с топливом для ТРД, тепловой защиты3и бака10для воды, обеспечивающей защиту от теплового излучения.

Управление направлением газоводяной струи турбореактивного двигателя 6осуществляется гидроприводами, включенными в гидравлическую систему (рис. 9.42). В нее входят гидромотор8поворота двигателя, гидроцилиндры9его подъема, гидроцилиндры10блокировки рессор и гидромотор насосного агрегата11, питающего систему орошения.

Рис. 9.41. АГВТ-150(43114):

1 – шасси; 2 – кабина; 3 – система орошения; 4 – цистерна для топлива; 5 – лафетный ствол; 6 – ТРД; 7 – подъемно-поворотное устройство; 8 – гидроцилиндр подъема; 9 – механизм блокировки рессор; 10 – бак для воды

Рис. 9.42. Гидравлическая схема привода:

1 – бак; 2 – насос; 3 – коробка отбора мощности; 4 – насос от двигателя; 5 – блок обратных клапанов; 6 – манометр; 7 – блок клапанов; 8 – гидромотор поворота двигателя; 9 – гидроцилиндры подъема двигателя; 10 – блокировка рессор; 11 – насосный агрегат системы орошения; 12 – бак для воды; 13 – гидрораспределители; 14 – предохранитель; 15 – щуп; 16 – фильтр; 17 – ручной насос; 18 – дренажная линия

Гидравлическая жидкость из бака 1 может подаваться насосами 2, 4 или 17 в напорную линию Р. От нее через соответствующие клапаны 7 или гидрораспределители 13 она поступает в исполнительные механизмы. При их выключении гидравлическая жидкость поступает к гидрораспределителю 13, а затем по трубопроводу Т через фильтр 16 в бак 1. По дренажному трубопроводу 18 жидкость сливается в бак 1 от гидронасоса 2 и гидромоторов 8 и 11.

В качестве гидравлической жидкости применяют масло ВМГ3, МГЕ и другие масла. Давление в системе 16 МПа.

Подача воды в поток отработавших газов осуществляется лафетными стволами. Они укрепляются на корпусе ТРД так, что водяные струи входят в газовый поток на 1 – 2 м от сопла ТРД.

На АГВТ устанавливают лафетные стволы с диаметром насадка 36 мм и расходами 20 л/с. Вода к ним подается от ПНС, насосно-рукавных автомобилей или пожарных автоцистерн.

При тушении пожаров АГВТ устанавливают на небольших расстояниях от горящего факела. Поэтому на них предусматривается защита от тепловых потоков до 25 кВт/м2для обеспечения безопасной работы.

Для защиты АГВТ от теплового потока пожара устанавливают оросители щелевого типа. Щелевые насадки ориентированы на орошение кабины боевого расчета, цистерны с горючим для ТРД и бака с горючим для АГВТ и колес. Для защиты от теплового излучения горящего факела рекомендуется применять съемные экраны из асбестоткани и других материалов. Ими возможно защищать колеса автомобиля, бензобаки, кабину.

Система запуска и управления ТРД дистанционная. Пульт управления выносной. Управление возможно на расстоянии до 50 м. На АГВТ предусматривается управление при помощи лоринготелефонной аппаратуры.

Одним из параметров, характеризующих совершенство ТРД, является тяга. Она находится в пределах 10 – 50 кН; и под действием тяги ТРД возникает опрокидывающая сила. Поэтому становится важным обеспечение устойчивости АГВТ против опрокидывания.

Опрокидывающая сила Ро, Н, равна (рис. 9.43)

Po = T + R, (9.13)

где Т– тяга, Н;R– реактивная сила водяной струи, Н.

Реактивная сила водяной струи, Н, определяется по формуле

, (9.14)

где ω – площадь насадка лафетного ствола, м2;р– давление у насадка, Па;n– количество лафетных стволов.

В вертикальной плоскости опрокидывающая сила в поперечном направлении равна

.

В горизонтальной плоскости ее величину определим по формуле

.

Опрокидывание произойдет в случае Rв= 0, тогда можно записать

, (9.15)

где Му– момент удерживающий, Н∙м;Мо– момент опрокидывающий, Н∙м.

Рис. 9.43. Силы, действующие на АГВТ

Из рис. 9.43 следует:

где Ga– сила веса, Н.

Сила веса определяется по формуле

(9.16)

где m– масса автомобиля, кг;g– земное ускорение, м/с2.

Опрокидывающая сила Рс,Н,

. (9.17)

Зная величины МуиМо, определяют запас устойчивости:

. (9.18)

Запас устойчивости для грузоподъемных стреловых машин принимается равным 1,4. При работе ТРД сила тяги может резко изменяться, например, при резком изменении частоты вращения двигателя, поэтому запас устойчивости принимается Ку ≥ 2.Для повышения устойчивости АГВТ необходимо применять блокировку рессор.

Некоторые параметры технических характеристик АГВТ приведены в табл. 9.6.

Таблица 9.6

Показатели

Размер-

ность

АГВТ-100(131)

мод.141

АГВТ-150(43114)

Тип шасси

Колесная формула

Мощность двигателя

Удельная мощность

Максимальная скорость

Тип ТРД

Количество лафетных стволов

Расход воды

Вместимость топливных баков

Производительность по газоводяной смеси

Углы поворота ТРД:

вверх

вниз

вправо и влево

кВт

кВт/т

км/ч

шт.

л/с

л

кг/с

град.

ЗИЛ-131

6х6

110

10,5

80

ВК-1А

3

60

2000

100

60

20

40

КамАЗ-43114

6х6

164

12,6

80

ВК-1

4

90

2700

150

60

15

45

Продолжительность маневров ТРД достаточно мала. Так, для ТРД АГВТ-150 время поворота в любую сторону до максимального значения равно 8 с, вверх – 13, а вниз – 4 с.

studfiles.net

Подача газоводяных струй от автомобиля агвт- 100(150)

АГВТ представляет собой пожарный автомобиль, на шасси которого размещен турбореактивный двигатель. АГВТ имеет топливную систему питания реактивного двигателя, гидравлическую систему для управления двигателем, систему подачи воды в выхлопную струю двигателя, а также систему орошения.

Управление автомобилем осуществляется с платформы или дистанционно с помощью выносного пульта. В газоводяной струе содержится около 60% воды и 40% газа, на выходе из сопла концентрация кислорода не более 14%, по мере удаления от сопла содержание кислорода увеличивается и в рабочем сечении, т.е. на расстоянии 12-15 м составляет 17-18%. Вода частично испаряется, попадая в струю раскаленного газа, а в зону горения вода попадает в распыленном состоянии.

Экспериментально установлено, что газоводяная струя обладает высоким охлаждающим эффектом, например: при подаче 60 л/с воды (АГВТ-100) в течение 5 мин снижает температуру фонтанной арматуры с 950 до 100-150°С.

Эффективность ликвидации горения зависит от содержания воды в струе и имеет оптимальное значение в пределах 55-60 л/с.

Характеристика АГВТ и предельный дебит горящего фонтана, который может ликвидировать один автомобиль, приведены ниже.

Тактико-техническая характеристика агвт

АГВТ – 100 АГВТ – 150 АГВТ-150

Шасси………………… ЗИЛ-131 КАМАЗ4 (31141) Урал -557

Масса, т.............................11,050 19,000 14,430

Двигатель...........................ВК-1 Р11В-300 Р11В-300

Объем бака (топливо), л...1700 2500 2460

Расход топлива, кг/с...........0,7 1,1 1,1

Расход воды. л/с..................60 90 90

Расход газа, кг/с..................40 60 60

Предельный дебит горящего фонтана, млн. М3/сут, который может один агвт

Компактный фонтан АГВТ-100 АГВТ-150

вертикальный............................. 3,0 4,5

горизонтальный......................... 2,5 3,5

Распыленный (комбинированный) 1,5 2,0

Количество АГВТ для тушения определяется по формуле:

, (13. 3.)

где Q — дебит фонтана, млн. м3/сут;

g — предельный дебит, который может потушить один автомобиль, млн. м3/сут.

Расчетное время тушения – 0,25 часа. Необходимость и продолжительность дальнейшей работы автомобиля ГВТ для охлаждения фонтана и территории после ликвидации горения определяет РТП.

Для выведения АГВТ на позиции готовятся 2 площадки – основная и запасная. расстояние до устья скважины должно быть не более 150 м. Ширина площадки готовится из расчета расположения требуемого количества автомобилей с разрывом между ними не менее 10 м. Площадки оборудуются подъездами для АГВТ в сопровождении страхующих тягачей.

В случае когда автомобилей недостаточно, применяют комбинированный способ: АГВТ и водяные струи, подаваемые из лафетных стволов, при этом коэффициент использования стволов принимают равным 0,7, т.е. количество лафетных стволов, обозначенных в таблице 13.3., увеличивают на 30%.

Направление огнетушащей струи от АГВТ зависит от скорости и направления ветра. Если на боевой позиции работают несколько АГВТ, тогда автомобили размещают на дуге в секторе не более 90 град., скорость ветра и соответсвующий угол приведены ниже:

Скорость ветра, м/с

Допустимый угол, град

До 5

90

5-10

30

Более 10

15

Ликвидация горения факела фонтана газоводяной струей осуществляется следующим образом: струя подводится под основание пламени, фиксируется относительно факела и плавно перемещается по оси факела вверх до срыва пламени, при прорыве пламени атака повторяется.

Если в течение расчетного времени горения фонтан не ликвидирован, АГВТ выключают и устанавливают причину, которой может быть:

- недостаточная интенсивность подачи газоводяной струи;

- большое расстояние от устья;

- неправильный выбор позиции по отношению к направлению ветра;

- неправильное взаимное расположение нескольких автомобилей и несинхронность в их работе.

При комбинированном способе подачи огнетушащих веществ сначала подают лафетные стволы, поднимают фронт пламени до максимальных значений, затем включают в работу АГВТ.

Схемы работы АГВТ приведены на (рис. 13.3.)

Рис. 13. 3. Схемы боевого развертывания при ликвидации горения фонтанов АГВТ.

1- водоем; 2 – автонасосы или насосная станция; 3 – линия d = 77мм; 4 – автомобиль газоводяного тушения; 5 – ручные стволы;

6 – напорно-рукавные линии d = 150мм ; 7- напорно-рукавная линия на орошение; 8 – разветвление.

Подача огнетушащих порошков.

Используются пожарные автомобили с расходами огнетушащих порошков из лафетных стволов 20 и 40 кг/с. Автомобили устанавливают на расстояние не далее 10м. от устья скважины. Экспериментами установлено, что этот способ эффективен при ликвидации горения компактных фонтанов, интенсивность подачи порошка должна составлять 1 кг/кг нефти или 1 кг/м3 газа, расчетное время принимается 30 с.

Ликвидация горения вихрепорошковым способом (табл.13.4.) состоит в том, что огнетушащий порошок вводят в зону горения взрывом заряда ВВ. На металлический поддон П-образной формы укладывают детонирующий шнур, на него – шашки (патронированный аммонит), затем мешки с порошком (рис.13.6.). Эта платформа собирается на безопасном расстоянии и подтягивается трактором на тросах к устью скважины. Взрыв производят дистанционно из специальных мест. Личный состав отводят на безопасное расстояние. Опытами установлено, что на 1 млн м3/сут газа требуется 60 кг огнетушащего порошка. Для подачи 100 кг порошка требуется 1 кг ВВ.

Таблица 13.5.

Количество огнетушащего состава для тушения вихревым способом

Высота факела Н, м

30

40

50

60

70

80

90

100

Масса порошка М, кг

55

130

250

430

690

1020

1460

2000

Масса заряда М, кг

0,7

1,6

3,0

5,2

8,5

12

18

24

Диаметр кольца, м

1,2

1,6

2,0

2,4

2,8

3,2

3,6

4,0

Основные величины для расчета требуемых ресурсов пожаротушения факела вихрепорошковым способом:

Мпос – масса порошкового огнетушащего состава, кг;

mвв – масса заряды взрывчатого вещества (ВВ);

Дк – диаметр кольцевого заряда ВВ, м.

Определяющим параметром расчетов выбрана высота факела, которая отсчитывается от земли до вертикали (см. рис. 13.6.)

Рис. 13. 6. Схема ликвидации горения фонтана вихрепорошковым способом:

1 – факел; 2 – не горящая часть фонтана; 3 – устьевая труба; 4 – слой огнетушащего порошка; 5 – заряд ВВ; 6 – кольцевой лоток для размещения огнетушащих средств; 7 – подтягивающие стальные канаты; 8 – платформа – щит; 9 – оттягивающие стальные канаты.

При размещении заряди и порошковых огнетушащих веществ в траншее, количество огнетушащих веществ и заряда определяются по эмпирическим …..:

, кг (13.4.)

m вв = 0.012 . М пос, кг (13.5.)

, м (13.6.)

Ширина и глубина траншеи – 0,4х0,4 м. , а рассчитанное по приведенным формулам необходимое количество средств тушения компактных газовых и газонефтяных фонтанов, высотой факела от 30 до 100м, приведено в табл. 13.5.

При расположении огнетушащих веществ на поверхности земли, диаметр кольцевого зазора, Дк, определяется аналогично изложенному выше, но масса огнетушащего порошка и заряда ВВ увеличивается на 20 %.

Ликвидация горения пневматическими порошковыми пламеподавителями (ППП -200).

Выброс порошка осуществляется энергией сжатого воздуха, количество установок принимается из расчета –одна установка на фонтан с дебитом 3 млн. м3 газа в сутки.

Установку располагают с на ветренной стороны на расстоянии 15-20 м от устья скважины (рис.13.7.). Оператор производит коррекцию положения ствола в вертикальной и горизонтальной плоскостях таким образом, чтобы точка прицеливания была на 3-5 м выше нижнего среза пламени. По команде РТП подают сжатый воздух для обеспечения выброса порошка.

Ликвидацию горения фонтана взрывом заряда ВВ применяются как исключение в случае неэффективности других способов и при наличии специального проекта, утвержденного вышестоящей организацией промысла и согласованного с органами Госгортехнадзора.

Расчетное время — 1ч.

Рис. 13. 7. Схема ликвидации горения фонтана с помощью пламеподавителя ППП-200:

1 – пламеподавитель; 2 – тяга; 3 – стальной канат.

До взрыва заряда ВВ личный состав тренируют на фрагменте заряда соответствующих размера и массы, и только после отработки всех элементов действий. по ликвидации горения и правил охраны труда, заряд ВВ подают к устью скважины.

Подача заряда ВВ к устью скважины осуществляется в основном тремя способами: на укосине по рельсовым путям, с помощью подъемного крана и поворотной стрелы, по стальному тросу с помощью лебедок и тягачей.

studfiles.net

Автомобили газоводяного тушения

В перечне пожарных автомобилей целевого применения автомобили газоводяного тушения (АГВТ) занимают особое положение. Это обусловлено как областью их применения, так и спецификой механизма тушения пожара.

Основу АГВТ составляют турбореактивные двигатели (ТРД). Высокая скорость их отработавших газов (рис. 9.39) обусловливает гидродинамический срыв пламени. Особенно эффективным он оказался при тушении горящих нефтяных и газовых фонтанов. Для улучшения механизма тушения в струю отработавших газов вводят воду. Это хотя и снижает их скорость и температуру (рис. 9.40), но обеспечивает охлаждение фронта пламени горящего фонтана.

Впервые АГВТ был применен в нашей стране в 1967 г., когда успешно был потушен пожар нефтяного фонтана с дебитом 6000 т/сут. С тех пор тушение горящих газовых (нефтяных) фонтанов осуществляется в основном АГВТ.

Для рационального тушения пожаров АГВТ должны удовлетворять ряду требований:

базовое шасси для них должно быть высокой проходимости, так как они используются в условиях бездорожья;

ТРД должны иметь большую тягу с достаточно большим количеством отработавших газов;

направление огнетушащей струи (отработавшие газы и введенная в них вода) должно регулироваться в вертикальной или горизонтальной плоскости;

в конструкции АГВТ должны предусматриваться устройства, обеспечивающие его устойчивость при работе ТРД.

АГВТ состоит из базового шасси 1 (рис. 9.41), турбореактивного двигателя 6, подъемно-поворотного устройства для него 7, лафетных стволов 5, цистерны 4 с топливом для ТРД, тепловой защиты 3 и бака 10 для воды, обеспечивающей защиту от теплового излучения.

Управление направлением газоводяной струи турбореактивного двигателя 6 осуществляется гидроприводами, включенными в гидравлическую систему (рис. 9.42). В нее входят гидромотор 8 поворота двигателя, гидроцилиндры 9 его подъема, гидроцилиндры 10 блокировки рессор и гидромотор насосного агрегата 11, питающего систему орошения.

Рис. 9.41. АГВТ-150(43114):

1 – шасси; 2 – кабина; 3 – система орошения; 4 – цистерна для топлива; 5 – лафетный ствол; 6 – ТРД; 7 – подъемно-поворотное устройство; 8 – гидроцилиндр подъема; 9 – механизм блокировки рессор; 10 – бак для воды

Рис. 9.42. Гидравлическая схема привода:

1 – бак; 2 – насос; 3 – коробка отбора мощности; 4 – насос от двигателя; 5 – блок обратных клапанов; 6 – манометр; 7 – блок клапанов; 8 – гидромотор поворота двигателя; 9 – гидроцилиндры подъема двигателя; 10 – блокировка рессор; 11 – насосный агрегат системы орошения; 12 – бак для воды; 13 – гидрораспределители; 14 – предохранитель; 15 – щуп; 16 – фильтр; 17 – ручной насос; 18 – дренажная линия

Гидравлическая жидкость из бака 1 может подаваться насосами 2, 4 или 17 в напорную линию Р. От нее через соответствующие клапаны 7 или гидрораспределители 13 она поступает в исполнительные механизмы. При их выключении гидравлическая жидкость поступает к гидрораспределителю 13, а затем по трубопроводу Т через фильтр 16 в бак 1. По дренажному трубопроводу 18 жидкость сливается в бак 1 от гидронасоса 2 и гидромоторов 8 и 11.

В качестве гидравлической жидкости применяют масло ВМГ3, МГЕ и другие масла. Давление в системе 16 МПа.

Подача воды в поток отработавших газов осуществляется лафетными стволами. Они укрепляются на корпусе ТРД так, что водяные струи входят в газовый поток на 1 – 2 м от сопла ТРД.

На АГВТ устанавливают лафетные стволы с диаметром насадка 36 мм и расходами 20 л/с. Вода к ним подается от ПНС, насосно-рукавных автомобилей или пожарных автоцистерн.

При тушении пожаров АГВТ устанавливают на небольших расстояниях от горящего факела. Поэтому на них предусматривается защита от тепловых потоков до 25 кВт/м2 для обеспечения безопасной работы.

Для защиты АГВТ от теплового потока пожара устанавливают оросители щелевого типа. Щелевые насадки ориентированы на орошение кабины боевого расчета, цистерны с горючим для ТРД и бака с горючим для АГВТ и колес. Для защиты от теплового излучения горящего факела рекомендуется применять съемные экраны из асбестоткании других материалов. Ими возможно защищать колеса автомобиля, бензобаки, кабину.

Система запуска и управления ТРД дистанционная. Пульт управления выносной. Управление возможно на расстоянии до 50 м. На АГВТ предусматривается управление при помощи лоринготелефонной аппаратуры.

Одним из параметров, характеризующих совершенство ТРД, является тяга. Она находится в пределах 10 – 50 кН; и под действием тяги ТРД возникает опрокидывающая сила. Поэтому становится важным обеспечение устойчивости АГВТ против опрокидывания.

Опрокидывающая сила Ро, Н, равна (рис. 9.43)

Po = T + R, (9.13)

где Т – тяга, Н; R – реактивная сила водяной струи, Н.

Реактивная сила водяной струи, Н, определяется по формуле

, (9.14)

где ω – площадь насадка лафетного ствола, м2; р – давление у насадка, Па; n – количество лафетных стволов.

В вертикальной плоскости опрокидывающая сила в поперечном направлении равна

.

В горизонтальной плоскости ее величину определим по формуле

.

Опрокидывание произойдет в случае Rв = 0, тогда можно записать

, (9.15)

где Му – момент удерживающий, Н∙м; Мо – момент опрокидывающий, Н∙м.

Рис. 9.43. Силы, действующие на АГВТ

Из рис. 9.43 следует:

где Ga – сила веса, Н.

Сила веса определяется по формуле

(9.16)

где m – масса автомобиля, кг; g – земное ускорение, м/с2.

Опрокидывающая сила Рс, Н,

. (9.17)

Зная величины Му и Мо, определяют запас устойчивости:

. (9.18)

Запас устойчивости для грузоподъемных стреловых машин принимается равным 1,4. При работе ТРД сила тяги может резко изменяться, например, при резком изменении частоты вращения двигателя, поэтому запас устойчивости принимается Ку ≥ 2. Для повышения устойчивости АГВТ необходимо применять блокировку рессор.

Некоторые параметры технических характеристик АГВТ приведены в табл. 9.6.

Таблица 9.6

Показатели Размер- ность АГВТ-100(131) мод.141 АГВТ-150(43114)
Тип шасси Колесная формула Мощность двигателя Удельная мощность Максимальная скорость Тип ТРД Количество лафетных стволов Расход воды Вместимость топливных баков Производительность по газоводяной смеси Углы поворота ТРД: вверх вниз вправо и влево – – кВт кВт/т км/ч   шт. л/с л кг/с     град.     ЗИЛ-131 6х6 10,5 ВК-1А     КамАЗ-43114 6х6 12,6 ВК-1    

Продолжительность маневров ТРД достаточно мала. Так, для ТРД АГВТ-150 время поворота в любую сторону до максимального значения равно 8 с, вверх – 13, а вниз – 4 с.

Предыдущая56575859606162636465666768697071Следующая

Дата добавления: 2015-04-11; просмотров: 1104; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЕЩЕ:

helpiks.org


Смотрите также

Содержание, карта сайта.